
J. Fluid Merh. (19941, col. 258, pp .  167-190 
Copyright 0 1994 Cambridge University Press 

167 

The effect of hydrodynamic interactions on the 
tracer and gradient diffusion of integral membrane 

proteins in lipid bilayers 

By STUART J. BUSSELL, DANIEL A. HAMMER 
AND D O N A L D  L. KOCH 

School of Chemical Engineering, Cornell University, Ithaca, h’Y 14853, USA 

(Received 2 October 1992 and in revised form 24 June 1993) 

Biological membranes can be considered two-dimensional fluids with suspended 
integral membrane proteins (IMPs). We have calculated the effect of hydrodynamic 
interactions on the various diffusion coefficients of IMPS in lipid bilayers. The IMPs 
are modelled as hard cylinders of radius a immersed in a thin sheet of viscosity ,u and 
thickness h bounded by a fluid of low viscosity p’. We have ensemble averaged the N- 
body Stokes equations to the pair level and have renormalized them following the 
methods of Batchelor (1972) and Hinch (1977). The lengthscale for the hydrodynamic 
interactions is ha = ,uh/,u’, which is 0(100a), and the slow dccay of the interactions 
introduces new features in the renormalizations compared to the analogous analyses 
for three-dimensional suspensions of spheres. 

We have calculated the asymptotic limits for the short- and long-time tracer 
diffusivities, D, and D,, respectively, and for the gradient diffusivity, D,, for @ < 1 and 
h 9 1,where @ is the IMP area fraction and h = ,uh/(p’a). The diffusivities are 

D,/ Do = 1 - 2$[ 1 - (1 + In (2) - 9/32)/(ln (A) - y)],  

DJD, = D,/Do - 0.07/(ln (A) - y), 

D J D ,  = 1 +$[-7+(6ln(2)+7/16+0.37)/(ln(h)-y)], 
where Do is the diffusivity in the limit of zero area fraction, and y = 0.577216 is Euler’s 
constant. The results for D,  and D, differ only slightly. The decrease in D g / D ,  as @ 
increases contrasts with the result for spheres for which D,/D, > 1. 

1. Introduction 
Biological membranes of eucaryotic cells are fluid suspensions which consist of 

integral membrane proteins (IMPs) suspended in lipid bilayers (see figure 1 ; Singer & 
Nicholson 1972). Saffman (1976) calculated the diffusivity of a single IMP in a lipid 
bilayer based on a physical model that represents the proteins as cylinders of radius a 
immersed in a viscous sheet of viscosity p and height h that is bounded by low-viscosity 
aqueous phases of viscosity p’. This one-particle solution yields diffusivities that agree 
with measured values of the diffusivities of TMPs at very small IMP concentrations 
(Peters & Cherry 1982). 

However, it is observed that the IMP diffusivities decrease substantially with 
increasing concentration. All previous theoretical descriptions of the effects of protein 
interactions on IMP diffusion have considered the hindering effects of the IMP’S 
excluded area but have neglected hydrodynamic interactions (Abney, Scalettar & 
Owicki 1989a). The theoretical predictions of IMP diffusivitics resulting from these 
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FIGURE 1. Cross-section of a typical biological membrane containing proteins and lipid molecules. 
The protein molecules have two regimes: a cylindrical core passing through the membrane and 
globular portions residing in the surrounding aqueous fluid. 

purely thermodynamic theories are typically a factor of 2 or 4 higher than experimental 
measurements at high IMP area fractions, $ (Abney, Scalettar & Owicki 1989a; Peters 
& Cherry 1982; Chazotte & Hackenbrock 1988). 

Since hydrodynamic interactions typically decrease the diffusivities (Batchelor 1976 ; 
Batchelor 1983; Brady & Bossis 1988), it is possible that hydrodynamic interactions 
can account for the lower diffusivities observed in experiments. As a first step toward 
understanding the effects of hydrodynamic interactions on the diffusion of integral 
membrane proteins, we shall derive short- and long-time tracer diffusion coefficients 
and the gradient diffusion coefficient in a dilute, monodisperse suspension of IMPS 
correct to O($). 

The derivation will rely upon our previous calculation of the mobility functions for 
a pair of interacting IMPS (Bussell, Koch & Hammer 1992). The two-particle mobility 
calculation, like the one-particle analysis of Saffman (1976), involved a solution of the 
following two-dimensional equations for the membrane 

p V 2 ~ - V p + 2 ~ l h  = 0, (1) 

v - u  = 0, (2) 
where p, u, p and h are the viscosity, velocity, pressure and height of the membrane and 
c is the force per unit area that the aqueous phase exerts on the membrane. The 
velocity u is restricted to the plane of the membrane, because a large thermodynamic 
force resulting from the hydrophilic nature of the lipid head groups and the 
hydrophobic nature of the lipid tails confines them to the bilayer. The stress acting on 
the membrane is given by 

(3) 
where E‘ = ~ ( V U ’  + V d ) ,  u’, p’, and p’ are the rate of strain, velocity, pressure, and 
viscosity in the three-dimensional aqueous phase and n is the unit normal to the 
membrane. The equations of motion for the aqueous phase are the three-dimensional 
Stokes equations 

c = n * (-g’/+ 2p/€)]z=0, 

pfV2uT-Vp’ = 0, (4) 

t7.u‘ = 0, ( 5 )  

u’lz=o = u. (6) 

in the half-plane z > 0 with no-slip boundary conditions, 

Solutions of equations (1)-(6) may be obtained through an asymptotic analysis in a 
large parameter h = ph/(p’a), which is typically 100-1000 in biological applications. 
The singular perturbation analysis for h + 1, yields a solution in an inner region, 
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FIGURE 2. Membrane cross-section showing inner and outer domains. The inner domain includes only 
the membrane, while the outer domain includes all phases. Within the intermediate domain both the 
inner and outer solutions are valid. 

corresponding to separations r from a protein for which r < ah and an outer region for 
which r + a (see figure 2). In the inner solution the stress due to the aqueous phase may 
be neglected in (l), and (1) and (2) reduce to the two-dimensional Stokes equations. 
The inner solution for the velocity field produced by translation of an IMP behaves like 
ln(r) for ha + r + a and must be matched to an outer solution, which takes account 
of the stress in the aqueous phase. 

At a separation r = O(ah), the drag exerted by the aqueous phase, 2a/h = O@’u/r), 
becomes comparable with the O@u/r2)  divergence of the membrane stress and all three 
terms must be retained in (1). However, the solution in the outer region is simplified 
because the IMPs may be treated as point forces exerted on the membrane fluid. 
Owing to the stress exerted on the three-dimensional fluid, the velocity produced by 
translation of an IMP decays like l / r  for r + ah. 

The two-particle solution was obtained by considering a near-field regime, in which 
the separation of the two proteins is O(a) and both lie within the inner region, and a 
far-field regime, in which the separation is O(ha) and the hydrodynamic interactions 
may be treated using a point particle approximation (Bussell et al. 1992). 

The tracer diffusion cocfficients can be determined from the solutions of 
hydrodynamic problems in which an effective thermodynamic driving force is exerted 
on the tracer particle (Batchelor 1976, 1983). The short-time tracer diffusivity, D,, 
applies for timescales t < a2/Ds ,  for which no significant change of the configuration 
of the particle occurs. 

In order to determine the effect of hydrodynamic interactions on the mobility of an 
IMP in a dilute monodisperse suspension, we ensemble average the hydrodynamic 
interactions based on the solution to the two-particle problem. The mobility, M, is 
defined by 

where Uis velocity andfis force. The mobilities of IMPS have unique values depending 
upon the environments in which they move. Tracer and gradient diffusion occur in 
distinct environments, and the natures of the driving forces differ. IMPs undergo tracer 
diffusion in macroscopically homogeneous environments. They experience random 
Brownian forces as a result of the thermal energy, kT, of the solvent, and their 
motions are undirected and uncorrelated. As a result, tracer diffusion coefficients are 
directly proportional to IMP mobilities when proteins are free of average net forces 
(Batchelor 1976, 1983). 

U = f m ,  (7) 
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Tracer diffusion coefficients of IMPs depend on the timescale over which the 
diffusion occurs. For times t Q a2 /D,  where D is the scalar diflusivity, particles travel 
short distances compared to a, and their relative positions in the suspension remain 
nearly unchanged. Since particle distributions do not change appreciably during this 
time interval, equilibrium radial-distribution functions are appropriate for the particle 
positions, and the diffusivities displayed are short-time diffusivities. Thus, the short- 
time diffusivity, D,, is 

(8) 

where m, = m,/  is the mobility relating the velocity of a protein to the force exerted 
on it, when the surrounding proteins are force- and torque-free and their positions are 
distributed according to the equilibrium distribution functions. 

For longer time intervals, the relative positions of the particles change, and, when 
t % a2/D,  the growth of the mean-square displacement of a tracer particle is governed 
by the long-time tracer diffusion coefficient, D,. Batchelor (1976) showed that the long- 
time diffusivity could be obtained from an equation of the form: 

D, = D,/ = kTm,, 

D, = D,/ = kTm,/, (9) 
where m, is the mobility relating the velocity of a tracer particle to an effective 
thermodynamic driving force acting upon it when the surrounding particles are force- 
and torque-free. In contrast to the calculation of the short-time mobility, the force 
acting on the particle in the calculation of mz is maintained over a long time interval 
and the structure of the surrounding suspension is allowed to evolve in response to the 
motion of the tracer particle. Typical values for proteins in lipid bilayers are 
D - lop8 cm2/s and u - 2 nm, so a2/D N 0(10-6 s). 

In contrast to the motions of IMPs in homogeneous environments, the motions of 
IMPs in concentration fields are directed and correlated. The diffusion coefficients 
relate the fluxes of the IMPs to the thermodynamic driving forces acting on each of the 
particles as a result of their concentration gradient. If we assume that the concentration 
fields obey the relation LlVlnnl Q 1, all particles in an L2 neighbourhood experience 
the same thermodynamic driving force, where L2 is an area containing many particles 
and IZ is the number density of IMPs (Batchelor 1976). Diffusion coefficients of IMPs 
are accordingly directly proportional to the mobility, mg, obtained when all proteins 
experience the same driving force, 

D;Vn = nf *ms, (10) 
where f * is the thermodynamic driving force. No relative motions occur between pairs 
of equal particles when they experience equal forces, so there is no perturbation to the 
equilibrium pair distribution. The hydrodynamic problem that must be solved to 
determine the gradient diffusivity for a monodisperse suspension is the same as the 
problem for a sedimenting suspension (Batchelor 1976). 

Solutions of the ensemble-averaged Stokes equations for the mobilities of IMPs in 
membrane suspensions differ from the corresponding ones for spheres in three- 
dimensional suspensions because of the differing functionalities for the hydrodynamic 
interactions. The slowest decaying hydrodynamic interactions between spheres scale as 
O(l/p), where p = r/a.  For p = 0(1), the hydrodynamic interactions between IMPs 
scale as O(1np) and therefore do not decay. The solutions for the mobilities of 
spheres (Batchelor 1976, 1982, 1983; Hinch 1977) involve renormalized forms of the 
ensemble-averaged Stokes equations. In this paper, mobilities of IMPS are found using 
the same methods as Batchelor and Hinch. Each IMP is interacting with all of its 
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neighbours within an O(ah) distance from its centre. Thus many (O(q5h')) proteins 
interact with each protein when K 2  -+ q5 -+ 1. However, these long-range interactions 
are adequately described by an effective medium, which includes a renormalized 
viscosity. The renormalization of the viscosity was not required in Batchelor's studies 
of diffusion of spheres, because of the faster decay of the interactions in three 
dimensions (Batchelor 1976, 1982, 1983). 

In $2, we discuss the ensemble-averaging techniques and identify the divergent 
pairwise IMP interactions which arise in the formulation. In $3,  we follow the 
formalism developed by Batchelor (1976, 1982, 1983) and Hinch (1977) to renormalize 
the slowly decaying two-particle hydrodynamic interactions appearing in the ensemble- 
averaged Stokes equation in order to calculate D,. We proceed to calculate D ,  
(Batchelor 1983) by solving for perturbations to the equilibrium distribution densities 
of IMPs caused by the motion of the tracer particle. In $4, we use the same ensemble- 
averaging and renormalization techniques to calculate gradient diffusivities of IMPS. 
Throughout the calculations, consideration is limited to monodisperse suspensions 
with hard disk potential interactions. These calculations result in the rigorously valid 
solutions for D,, D,, and D, in the limit of low area fractions. 

2. General methods 
The methods we use are based on ensemble averages of hydrodynamic interactions 

(Hinch 1977). The membranes are treated as incompressible Newtonian fluids and the 
IMPs are approximated as hard disks with no-slip boundary conditions. The relevance 
of this simple model to a biological membrane is discussed by Saffman (1976) and 
Bussell et al. (1992). We begin our formal analysis of the suspension by considering the 
N-body equation of momentum conservation for the membrane, 

where 1 is the stress tensor, x is a position in the suspension, x is the configuration of 
the N-particles in the suspension with particle q, q = 1 to N ,  centred at x,,frepresents 
the thermodynamic driving forces applied to the proteins and c is the stress exerted by 
the aqueous phase. The stress tensor in the membrane is 

7 = -P(X I x )  /+ 2 P W  I x )  + W X  I XI, (12) 

where p is pressure, ,u is the viscosity of the membrane, € is the Eulerian rate of strain 
tensor, and TP is a generalized function which represents the extra stress above the 
value specified by the fluid law if x is inside any particle and is zero otherwise. The 
Eulerian rate of strain tensor is 

E(x I X I  = ; ( W x  I XI + ( W X  I x))", (13) 

V.u(xlx) = 0. (14) 

where u is velocity. Along with Stokes equation, there is also the continuity equation, 

There is a hierarchy of ensemble averages of the AT-body equation conditioned on the 
location of q particles, q = 0 to N .  This hierarchy may be truncated and solved at the 
q level, generating errors of O(q54+1) and higher, provided that they are properly first 
renormalized. Ensemble averages of functions involve integrations over the positions 
of specified particles, and integration over the position of a particle reduces the number 
of particles that the function depends upon by one. 
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We make use of a variety of distribution functions, and the following examples 
establish the normalization convention, 

1 = P(x) dx, dx, . . . dXN, s 

where all particles are indistinguishable. P(x)  is the probability density function of the 
N-body configuration x, Pz(xn, xl) is the probability density function for any particle 
pair at positions x, and x,, and P2(x, I xl) is the probability density function of a 
particle at x, conditioned on a particle at xl. In future equations, we omit the subscript 
on probability density functions because their arguments suffice to indicate the number 
of particles involved. 

The q = 0 equations are 

(16) 

(17) 

2(0>  
V . ( V ( x )  = - ( f ) W - T ,  

( T )  (4 = - (P) (XI/+ 2Lc(E) (XI + ( T ” )  (4, 

(TP)(X) = J; (TP)(XI~l)P(xl)dl/ l> (18) 
x--xI/ G a 

V.(u)(x) = 0, (19) 
where the ( ) symbols indicate an ensemble average. Notice that the y = 0 ensemble- 
averaged equations involve the q = 1 conditionally averaged extra stress, ( TP) (x I xl). 
The solution of the q = 0 equations requires data for the y = 1 equations or an 
approximation. 

The one-particle conditionally averaged equations, q = 1, are similar to the q = 0 
equation, 

v .  ( T )  (x I XI) = - (f) (x 1x1) -h’ (20) 

(21) (V (x I x1) = - (P) (x I .,I /+ 2 / 4 0  (x I x,) + ( TP) (x I xl>, 

(TP)(XIX1) = J ( T P ) ( X l X 1 , X , ) P ( X 2 1 X l ) d ~ ,  (22) 
lx-n,l < a  

v~(u)(x~xl) = 0. (23) 

At this level, the highest-order effects involve two-body interactions via the 
( T P )  (x I xl, x,) term in (22). This is the highest level at which we calculate the mobility 
and diffusivity of IMPS. Extending the calculations to higher order requires results for 
three-body interactions. However, simulation techniques might be best suited to 
evaluate suspension behaviour at the level of detail involving three-body interactions 
or higher (Brady & Bossis 1988). 

The ensemble averaging of the equations of motion for the three-dimensional fluid, 
(4) and (9, and the boundary conditions linking the three- and two-dimensional fluids, 
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( 3 )  and (6), present no special problems since these equations are linear and the three- 
dimensional fluid contains no particles. The results are: 

(a>(XIXl) = n - ( - ( p ' > ( x  l ~ l>> /+2Pu(E ' ) (~ I~ , )  L o ,  

P'V"(U'> (X I XI) - -v(P')  (x: I XI) = 0, 

(u'> (x I XI) Iz=o = ( u )  (X I XI). 

(24) 
(25) 

V . ( U ' ) ( X I X , )  = 0, (26) 
(27) 

We solve the one-particle conditionally averaged equations, (20)-(23), in the inner 
region where the stress 2(a)/h in (20) can be neglected by inverting them using a Green 
function technique. This operation involves the approximation of painvise additive 
particle interactions. The technique of ensemble averaging is complicated because 
quantities determined by pairwise addition of interactions diverge as the averaging 
domain increases. This divergence necessitates renormalizing the problem (Hinch 
1977). Renormalization of the ensemble-averaged equations involves treating the 
slowest decaying particle interactions in terms of an effective medium, so as to avoid 
the divergent pairwise summation. 

We use the method of reflections to identify the slowly decaying interactions which 
diverge when added painvise (Kim & Karrila 1991). The method of reflections 
approximates fluid dynamic solutions by successively evaluating disturbances caused 
by particle interactions. Each disturbance creates new responses and, hence, the 
method is iterative. The velocities and forces of a particle are repeatedly related to 
external flow fields using Faxin laws. 

The formulation of the renormalization procedure for p 4 h involves the two- 
dimensional analogue of the Oseen-Burgers tensor, and its derivatives, which is the 
Green function for the two-dimensional Stokes equation. The Oseen-Burgers tensor 
characterizes the creeping flow response of a three-dimensional Newtonian fluid to a 
point-force. The two-dimensional analogue is found by solving for the flow field which 
results from a force applied to an isolated disk and taking the limit as the disk radius 
goes to zero (Kim & Karrila 1991). The two-dimensional Oseen-Burgers tensor is 

There is an arbitrary isotropic term in (28), and we find it convenient to put the In (a) 
term in the tensor. The arbitrary term arises because the velocity of a disk undergoing 
Stokes flow in response to a force in a two-dimensional fluid is indeterminate. 

We use the two-dimensional Oseen-Burgers tensor, along with the appropriate 
Faxen laws, to identify the strength of the reflections arising from particle interactions. 
The Faxen laws relate the motions of a particle to their force moments and an imposed 
velocity field. They are derived by using the reciprocal theorem (Kim & Karrila 199 1). 
The relevant FaxCn laws for a two-dimensional fluid are 

u = fmo + (1 +$Z2VZ) u,, 

S = 4zpa2( 1 +$z2V2) Em, 
(29) 
(30) 

where U is the velocity of a particle, m0 is its mobility as an isolated particle: u, is the 
external velocity field, S is the stresslet of a particle, and E, is the external rate of 
strain. The mobility of an isolated particle in a membrane is (Saffman 1976) 

7 F L M  2 5 8  



174 S.  J. Bussell, D .  A. Hammer and D .  L. Koch 

In deriving (29), it is necessary to apply the reciprocal theorem to a region bounded by 
the particle surface and a surface at a separation in the matching region, i.e. a 4 r -g ah. 
Thus, the factorfwt, in (29) arises from the matching of the inner solution considered 
here to an outer solution that includes the effect of the surrounding aqueous phases. 

The external velocity field in two dimensions is slightly different from the equivalent 
quantity in a three-dimensional fluid. It has the value 

wheref'") are external point-forces of strength w(") at locations ytn) .  Thef'")m, terms 
in the integral again arises because of the divergent nature of the two-dimensional 
Oseen-Burgers tensor. It represents the velocity at yen) from a point-force there and 
again is only determined after matching to an outer solution. 

Using the two-dimensional Oseen-Burgers tensor and the Faxen laws, we may 
determine the strength of the reflection terms which affect the velocity of particles 
undergoing tracer or gradient diffusion. Since we are integrating the two-particle 
interactions over all relative positions, any terms which decay like O ( P )  or slower 
cause a divergence when inverting the ensemble-average equations, (20t(23), where 
now r = Ix--x,I. 

The zeroth-order solution for the vclocity field resulting from a force on a central 
particle,JJ is the solution for the velocity resulting from a force on an isolated disk, 

(33) 
where (')u is the zeroth-order velocity disturbance, ('I U is the zeroth-order velocity of 
the protein, andfis also the force the protein exerts on the surrounding fluid. Looking 
at the velocity disturbance, we see that a forced particle creates a velocity disturbance 
with a force term, J-JJ which is O(ln(r)), and a quadrupole term, V'J-JJ which is 
O(r-'). 

Based on (29) and (33) and setting v, = (%, the first-order disturbance to the 
velocity of an IMP neighbouring the central particle, (l)U, is, to leading order, (')u 
evaluated at a separation distance of r or O(1n (r))  + O(rp2). The term (')jim,, in (17) is 
zero because the forces on all proteins are set by the boundary conditions and, thus, 
only zeroth-order forces can be non-zero. The stresslets of neighbouring IMPS are the 
lowest-order poles affected by the velocity disturbance because the torques are also set 
by the boundary conditions. Based on (lX), the first-order stresslet, (l)S, of 
neighbouring particles resulting from (')u are proportional to V((')u) which is the sum 
of an O(r-l) term and a non-divergent O(rP3) term. These stresslets then induce first- 
order velocity disturbances, (%, equal to (')S-O(r-') or O(r-'). The O(r-') factor is the 
strength of a dipole-driven velocity field. The first-order velocity disturbances generated 
by neighbouring proteins create a second-order disturbance to the velocity of the 
central protein, @)U, equal to (l)uI,. or O(rp2). Higher reflections decay faster by O(r-2) 
relative to the previous reflection. 

This procedure allows us to identify terms which require renormalization in both the 
tracer and gradient diffusion problems. The first-order disturbance to the velocity of a 
tracer protein, (') U, is zero because neighbouring proteins are force-free and create no 
zeroth-order velocity disturbances. Hence, the velocity of a forced particle in the tracer 
diffusion problem has a divergence like S(')Ur dr or O(ln(r)). This result contrasts with 
the sphere problem for which the integrals arising from the inversion of the ensemble- 
averaged equations for the velocity of a tracer particle in a suspension are absolutely 
convergent (Aguirre & Murphy 1973; Batchelor 1976). 

(') u+ (J + yv") =f, (O)* = 
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In contrast to the tracer diffusion problem which has only one term which decays 
slower than U(r-'), the gradient diffusion problem has three terms which require 
renormalization. The calculation for the mobility of a central particle undergoing 
gradient diffusion involves the same divergent pairwise term as a tracer particle. In 
addition, it also involves divergent terms caused by the first-order disturbances to the 
central particle's velocity, (') U. T h s  disturbance is caused by its neighbouring particles 
which experience the same thermodynamic forces driving the central particle. Based on 
this identification of divergent terms, we renormalize the tracer and gradient diffusivity 
problems following the methods of Hinch (1977) and Batchelor (1972). 

Three-particle interactions are neglected because they make O(q5') corrections to the 
diffusivities. The effect of the slowest decaying reflection involving three particles on 
the velocity of the test particle decays like r;; r;:r;;, where rij.is the separation between 
particles i and j and the test particle is particle 1. Averaging over the positions of 
particles 2 and 3 leads to a logarithmically divergent integral, similar to that obtained 
in the two-particle problem. However, this divergence can be removed (as before) by 
renormalizing the viscosity to the next order in the area fraction expansion. 

3. Tracer diffusion 
3.1. Short-time diffusivity 

We solve a renormalized version of the one-particle conditionally averaged Stokes 
equations to determine the short-time diffusivity, D,, of the tracer IMP in the presence 
of force-free IMPS. At the limit of low q5, the pair probability, P(x,Ix , ) ,  is uniform 
throughout the suspension. The mobilities of particles experiencing either a Brownian 
or constant force are identical, and they are related to short-time diffusion coefficients 

We define the velocity of an IMP resulting from a force as ( u ) ( x I x l ) - ( u ) ( x ) .  
Unless the suspension as a whole experiences a net force, the unconditionally averaged 
velocity of the suspension, ( u ) ( x ) ,  is zero. 

At the lowest level of approximation, the suspension is a pure lipid bilayer and 
contains no tracer particles. At the next level, the suspension contains an isolated 
protein in an infinite medium. The solution for the particle mobility is given by (31). 
The next level of approximation incorporates the first effects of particle interactions. 
The two-particle hydrodynamic interactions are correctly represented to U (  1) by the 
solution of two isolated particles in an infinite medium (Bussell et al. 1992). Given a 
configuration for two particles, there is an U(q5) correction to the hydrodynamics 
caused by the presence of other particles. As mentioned earlier, solution of (20)-(23) 
by simple inversion with the pure fluid Green function results in non-convergent 
solutions. Thus, we must renormalize the equations, and this involves determining the 
bulk properties of the membrane to U(q5) (Hinch 1977). 

The bulk properties of a membrane in response to the motion of a tracer protein are 
characterized by the response of force-free proteins to the flow-field generated by the 
tracer particle. The force-free proteins respond with a velocity field driven by a 
stresslet. Determining the bulk stress tensor in the membrane to U(#)  is analogous to 
finding the Einstein viscosity for a suspension of spheres (Einstein 1905) and this 
calculation has been performed for a suspension of n-dimensional particles by Brady 
(1984). The equivalent of the Einstein viscosity in a two-dimensional fluid is therefore, 

p = (1 +2q5)pu. (34) 
The governing equations, (20)-(23), for the vclocity of a tracer protein are 

by (8). 

7 2  
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renormalized using the effective viscosity. The renormalized one-particle conditional 
equation for the velocity of a tracer particle resulting from a force is derived by 
inserting (21) and (22) into (20) and incorporating the change in divergence of the stress 
associated with the effective viscosity into both sides of the equation. The result is, for 
r 2 a,  

2 
-V(P>(XI Xl)+V.(2P*(E)(xlxl))+h(b)(XIXl) 

= -v .  

where x1 is now located at the centre of the tracer particle, 
(35)  

and g is the radial distribution function. The radial distribution function is necessary 
in order to extend the formulation to cases in which the pair distribution function, 
P(x, I xl), is not uniform. The renormalization removes the divergent O(P)  term which 
affects U. 

Equation (35) is most easily solved by expanding in a Taylor series in 4. The zeroth- 
order equation is taken as the complete left-hand side of (35)  with the right-hand side 
set equal to zero, 

20° 
- vpyx 1 XI) + v * (2p*E0(x I XI)) + 7 (x I xl) = 0. (37) 

The solution of (37) has an O(1) contribution which is the solution for the velocity field 
driven by a forced disk in a pure lipid bilayer and an O(q5) contribution that arises from 
the effective viscosity. The O(4) remainder to the solution of (35)  is q5 multiplied by the 
solution of 

= -v .  J [ < T ~ ’ ’ ) ( X I X ~ , X ~ ) ~ ( X ~  I x1>-4g(x2 I ~ ~ > ~ ~ ( ~ X , I X ~ ) S ( X - - X , ) I ~ ~ / ’ , ,  
lxI-x21 > 2a 

(3 8) 
where TP” and €“ are the 0(1) results when particle 1 has a force and is in the presence 
of a single force-free particle in a lipid bilayer. Both TP” and €” do not have to be 
evaluated in the effective medium because the O(q5) correction to the result from the 
effective viscosity leads to an O(q5’) contribution to the remainder. The utility of this 
formulation is that (38)  can be inverted and solved using the two-dimensional 
Oseen-Burgers tensor. 

The velocity field generated by a forced protein moving through a fluid with viscosity 
p for a < Ix,-xl(  < 2a and peff for 2a < Ix2-x11 is given by the solution to (37). The 
effective viscosity is a function of r if g is non-uniform. Equation (37) has two possible 
solution algorithms. The differential equation can be solved by discretizing the fluid for 
2a < Ix, - xll in order to account for the non-constant viscosity. The equation is solved 
in ltOt discrete annular regions surrounding the tracer particle, where the viscosity is 
evaluated at the centre of each annulus. The stresses and velocities are set equal at the 
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boundaries between regions, and the resulting system of equations is solved 
numerically. On the other hand, (37) can be numerically integrated. We have chosen 
the first algorithm because it is analogous to the technique Hinch (1977) used for 
spheres at low 4. Within each region, (37) is the Stokes equation for the pure lipid 
bilayer. After solving the Stokes and continuity equations in each region and applying 
no-slip boundary conditions at the surface of the IMP, we find that the velocity field 
is 

+ ~ ~ ) f , . ( - ~ x ~ x , ~ + ( r ~ - a ' ) ( f ~ ~ )  for I = l(u < Ixz-xll < 2a), (39) 

+c~)f,(-~x,x,+(~~-a~)6~~) for 2 < 1 < I t o t F l ,  (40) 
(41) U ,  = c6 U, + C, J;,& + C, VzJjf, for Rtrunr < Ix, - xll. 

Equation (40) for 1 is valid for Ix2-x11 such that, (1-2) < ( l ~ ~ - x , 1 - 2 ~ ) ( ~ ~ ~ ~ - 2 ) /  
(Rtrune-2u) < ( I -  l), where Rtrulzc is the value of Ix2-x11 at which we assume 
g(lx2 -xJ) = 1. In practice, it was the distance at which 1g(lx2 -xJ) - 1 I < 0.04. For all 
area fractions, 9 . 9 8 ~  < Rtrunc < 11.76~. The Ut in (39) is the velocity of the tracer 
particle needed to solve for its mobility. 

The constant terms are determined by equating the velocities and stresses at the 
boundaries separating the regions. This procedure is easily automated for the case in 
which the pair-probability has structure. In the limit 4 + 0, the pair-probability is 
constant and only two regions are necessary. In this case the solution is 

1 
c(0) = ~ 

47cp ' 1 

c7 = 1, 
- 

a2( -9;+ 17) 
c, = - 

(15:+ 17) ' 

- 

c s u i =  u'+4n(l@+17~)[  9 --1 ) -1n(2) ( 15-+17 )] . 
We determine the final unknown, U,, by matching the inner solution with the outer 

solution for a < Ix,-xx,I + ha obtained by solving (37) with (24)-(27) (Saffman 1976). 
After performing this match, we find 
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+remainder. U m, -- D, =1-24 I -  
uo mo D n  In ( A )  - Y 

[ 1 +In (2) - 9/32] - -  --- 

For A = 250, a typical value for IMP-membrane systems, 

-- - - -  - m*y - Ds = 1 - 1.4395 + remainder 
Uo mo Do 

(44) 

(45) 

Equations (44) and (45) give the results for the short-time diffusivity obtained by 
replacing the particles surrounding the tracer particle by an effective viscosity (36). The 
same result could have been obtained by replacing each of the neighbouring particles 
by a point dipole of strength 4xpa2(€) (x, I x,). Indeed, the renormalization leading 
to (35) is not strictly required for the problem of tracer diffusion in a membrane. The 
integration of the term ( T p )  (x I x,, x2) P(x2 I x,) d V, in (35) will converge and give the 
same result as (44) and (45) if the integration is carefully performed over both the inner 
and outer regions. However, the renormalized form of (35) has the advantage that the 
remainder term (given by (46) below) can be evaluated by integrating over the inner 
region only. 

In addition, the renormalization leads to a physically appealing interpretation of the 
change of mobility in terms of the effects of a modified effective viscosity. The physical 
origin of the various terms in (44) may be interpreted as follows. There is a decrease, 
- 24, in the ratio of the mobility to its value at infinite dilution, owing to the increased 
stress on the protein associated with the change in effective viscosity from p to 
p(1+2$). There is an increase, 2$/(ln(A) -y), caused by the alteration of the outer 
solution and matching conditions associated with the increased viscosity of the mem- 
brane. Finally, there is an increase in the mobility ratio of 24(ln (2) -&)/(In (A) - y )  
caused by the lower viscosity associated with the exclusion of particles from the region, 
a < r < 2a. It will be seen that the renormalization we have used, including a change 
in the viscosity owing to volumetric exclusion near the tracer particle, leads to quite 
accurate results even without the inclusion of the remainder term. 

Equation (38) corrects for the higher multipole interactions neglected by the effective 
medium approximation. It is evaluated using the two-particle solutions of Bussell et al. 
(1992). After inversion of (38) with the pure solvent Green function, the solution for 
the O($) remainder to the velocity of particle 1 neglected by (37) is 

remainder = - U, * [ U i  -4xpa2€”(x, I x,) : VJ(x2 - x,)] P(x2 I x,) d V,. (46) 

The velocity U i  is the disturbance to the velocity of the tracer particle to O(1) caused 
by the presence of a neighbouring particle. It is taken from the solution for two isolated 
particles and is 

u: ‘s Ix1-xzI > 2u 

where a, should not be confused with the particle radius: both a, and c, are 
components of the mobility matrix (Bussell et al.) which relates the velocities of the 
proteins to their forces. The second term in (46) arises from the renormalization. It 
contains the terms which contribute to the effective viscosity of the medium. 

The rate of strain €”(x2 I x,) is evaluated with the O(1) contribution to uo which is 
the velocity disturbance emanating from an isolated IMP in a pure lipid bilayer, (33). 
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FIGURE 3. The normalized short-time diffusivity, DJD,, for an IMP-membrane system with h = 250. 
The full solution with structure incorporates non-uniform radial distribution functions based on hard 
disk interactions into the solutions. The full solutions have a nonlinear dependence on Q which 
exceeds the rigorous precision of the results which are limited to O(Q). 

This is an approximation which is valid for results limited to O(Q). The evaluation of 
the integral in (46) completes the calculation for the tracer diffusivity at short times and 
low #. In the limit as Q + 0, we find 

The remainder is small compared to (44), the effective medium approximation to the 
tracer velocity. The remainder continues to be insignificant at high 4. Recalling our 
discussion of the method of reflections, the integral in (46) converges like J^'?)Urdr 
after removal of the (')U reflection. Therefore, the rate of convergence is O(rP3 dr). As 
a result, we are justified in evaluating the particle interactions in Y < ha and then 
matching to the outer solution. 

Equations (44) and (48) give the asymptotic result for small volume fraction of the 
tracer diffusivity with errors of O(@-). The most reliable method for determining the 
diffusivity at higher volume fraction is through Stokesian dynamic simulations, such as 
those performed for the short-time diffusivity of spherical particles by Phillips et al. 
(1988). However, in figure 3, we present the results given by (43) over a range of volume 
fraction. Equation (43) represents an effective medium approximation in which the 
effect of the surrounding particles is represented by an effective viscosity (36)  with the 
pair probability given by g = 1 .  This effective medium approximation is similar to one 
suggested by Beenaker & Mazur (1982; their equation (8.2)). In the case of spherical 
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particles, the exact calculations (Phillips et al. 1988; Beenaker & Mazur 1984) were 
found to lie between the low volume fraction asymptote and the effective medium 
approximation. We have also calculated the diffusivity of a particle in an effective 
medium given by (36) with the pair probability g(Q, r )  obtained from a Monte Carlo 
simulation of a hard disk suspension at  equilibrium (Metropolis et al. 1953; Chae, Ree 
& Ree 1969). Since the effective viscosity is now varying continuously in the region, 
r > 2a, equation (43) is no longer applicable. Instead, we solve (39), (40), and (41) for 

regions. We found that results with a precision of kO.1 YO could be obtained by 
using 200 regions. A comparison of these results with those obtained from (43) (see 
figure 3) indicates that the structure of the pair probability has a small effect on the 
short-time diffusivity according to the effective medium approximation. 

Unfortunately, we are unaware of any experimental data for short-time diffusion 
coefficients of IMPs large enough relative to the lipid molecules so that the 
hydrodynamic model is appropriate. Current techniques have a time resolution of 
O(1 s), which is far too slow for measuring D,  (Qian, Sheetz & Elson 1991). 

3.2. Long-time dijiusivity 
Following Batchelor (1976, 1982), we derive the long-time diffusivity of a tracer 
particle by considering the average velocity in response to a small thermodynamic 
driving force. The motion produced by the driving force is small compared with the 
undirected Brownian motion (for small deviations from equilibrium) as expressed by 
a small Peclet number, Pe. The perturbations to the equilibrium pair probability owing 
to the directed motion are small (O(Pe)), but they lead to an O(1) correction to the 
thermodynamic driving forces acting on the particles and thereby affect the average 
velocity and long-time diffusivity. 

We follow the notation and conventions established by Batchelor (1982). We begin 
with the N-body Smoluchowski equation ensemble averaged to the pair level, 

where Vis the short-time relative velocity between a pair when one is forced by driving 
forcef, the conditional pair probability function replaces the joint probability in (4.2) 
of Batchelor (1982), the IMPs interact with a hard disk potentia1,j is flux, and D, is 
the relative diffusivity between two isolated IMPS in the suspension. 

We make the following definitions, 

r = r2-r1, 

V =  K - 5 ,  
v = v,-v,, 

rr 
Ph r2 

a, - 6,) - - (c, -em) 

where a,, b,, c,, and em are elements of the two-IMP mobility tensor (Bussell et al. 
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1992). The differential equation governs the perturbation to the pair probability 
distribution, p ( x z / x l ) ,  caused by the convection, V,  of the tracer relative to 
neighbouring particles. The boundary conditions to the steady-state equation are that 
p(x , /x , )  + 1 as Y +  co, andj.n+O as r+ 2a. However, it will be seen that the no flux 
boundary condition at r = 2a is satisfied for any non-singular pair probability, p ,  
because the relative diffusivity and relative velocity go to zero as r + 2a. Therefore, the 
inner boundary condition will be replaced by an analysis based on the form of the 
differential equation near r = 2a. 

The differential equation simplifies after we substitute the dimensionless variables, 

r = ap, 

v = -w, 1 
U 

l f l a  Pe = ~ 

2kT’ 

into the equation. Here, a ,  is the value of a, as r + co. The convective term, V,  scales 
like O(Pe),  and following Batchelor (1982), we therefore substitute the following 
expansion for p(x , /x , ) ,  

After simplification, equation (49) becomes 

with 

The boundary condition as r + co is Q + 0. In order to determine the inner boundary 
condition, we must consider the asymptotic forms for am-b, and c,--e,. From the 
lubrication results for these coefficients (Bussell et al. 1992), we find that 

1 
37c 

a,  - b, = - $, 1 
( 5 5 )  

c, - e, = - €2, 
27c II 
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where e = p-2. Inserting into the expression for j ,  (49), along with the previous 
definitions, the inner boundary condition becomes, 

which is satisfied if Q is non-singular at e = 0. Seeking a non-singular solution for Q, 
we substitute a power series expansion for Q about e = 0, 

(57) Q = OQ + e(lQ) + e2('Q), 

into the differential equation, (53). The leading-order terms are 

4 2' (58) IQ-L(oQ) = --lQ dQ = -I 
dP 4 

This condition can be used to start the integration at e = 0. Equation (57) satisfies (56), 
and based on the condition in (58), Q is well behaved in the region e = 0. 

We solve (53) by dividing the domain into inner and tail regions in order to best 
handle the boundary condition at infinity. Instead of taking the domain as large but 
finite, we form an asymptotic solution valid at large p in order to increase the 
convergence rate of the solution. In the inner region, we solve the full differential 
equation using a Runge-Kutta routine. We determine two particular solutions, Q, and 
Q,. Any linear combination of the two solutions such that c, Q1 + c, Q, = 1 satisfies 
(53) and (58). 

In the large p region, all coefficients in the differential equation, (53), are 
approximated by their values at infinite separation. The values for the zeroth and first 
derivatives of Q are set equal at the radius of separation, pt, between the two regions. 
The radius pt is increased until the answer is unaffected by further increases. In the tail 
region the differential equation takes the form 

(60) c3 

P 
with the solution Q, = - 9  

which satisfies the boundary condition that Q-0 as r -  a. Requiring both Q and 
dQ/dp to be continuous at p = pt, we determine that the constants el, c2 and ca, must 
satisfy the conditions 

c,+c, = 1, 

With the solution for Q and therefore the pair probability Y(x,Ix,), we can 
determine the contributions of the structure to the long-time diffusion coefficient. The 
variation in the pair probability leads to equal and opposite Brownian forces acting on 
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the two particles equal to -kTV,(ln(P(x,I x,)) for i + j .  These forces lead to an 
additional contribution to the flux and therefore the mobility of the tracer particle 
given by 

A U, = Drel* Up. (62) 

Integrating (62) over all particle pairs, we find, after simplification (Batchelor 1982), 

Adding ( A  U, )  to the results for Ufrom the short-time calculation, taking the absolute 
value, and normalizing with U,, gives the result for DJD,. We find that ( A U J  has a 
value of 

(64) 
A U , -  -0.074 - P Y ~ ~ - Y M ,  

- - 
u,, ln(h1-y mo ’ 

For h = 250, this results in the asymptotic form 

%= 1-1.444. 
DO 

There is very little differcnce between the asymptotic solutions for D,/D, and D,/Do. 
To some extent the similarity in the behaviours of the long- and short-time tracer 
diffusivities of IMPS could have been anticipated from the nature of the interactions. 
The hydrodynamic interactions that contribute to the short-time diffusion coefficient 
occur over separations ranging from #(a) out to #(ha) and they make an #($) 
contribution to D,/D, and D,/D, as A+ m. The structure of the pair probability, on 
the other hand only extends over O(a) separations, and it makes an O(d/ln(h)) 
contribution to (Dz - D,)/D,, as h --f 0. Thus, if In (A) is sufficiently large the short- and 
long-time diffusivities must have similar values. However, the small magnitude of the 
numerical coefficient (- 0.07) in the numerator of (64) could not have been anticipated 
from this argument and this value is even smaller than the corresponding coefficient in 
the calculation for spheres (Batchelor & Wen 1982). 

We can also compare our results for the asymptotic value for D,/D, to theories 
which neglect hydrodynamics. The result for D,/D,  for IMPs interacting with hard- 
core interactions and neglecting hydrodynamic interactions is DJD, = 1 -2q5 (Abney 
et al. 1989 a). Evidently, hydrodynamic interactions decrease the effect of hard-core 
interactions as 4 + 0. 

4. Gradient diffusion 
The calculation of gradient diffusion coefficients closely follows the calculation for 

tracer diffusion coefficients. The difference between the calculations is that all of the 
particles in the gradient diffusion problem experience the thermodynamic driving force, 
whereas only the tracer particle experiences a driving force in the tracer diffusion 
problem. In order to make the analysis of the problem tractable, we must assume that 
the concentration field obeys the relation LlVlnnl G 1 (Batchelor 1976). This 
guarantees that all particles in an Lz neighbourhood experience the same thermo- 
dynamic driving force. A simplification arises in the calculation of gradient diffusion 
coefficients in monodisperse suspensions since no relative motions between IMPs occur 
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when considering interactions at the pair-level. Thus, we do not need to calculate 
perturbation distribution functions in order to calculate D,. 

Until we proceed to the level involving two-particle interactions, the gradient 
diffusion problem is indistinguishable from the tracer problem. At the level at which 
a single particle is experiencing a thermodynamic force independent of other particles, 
its velocity is U, given by (31). Recalling our discussion of the method of reflections, 
three terms require renormalization at the next level at which two-particle interactions 
are important. The effective medium must reflect the pair-wise divergent contributions 
which arise in the tracer problem along with the force and quadrupole terms 
introduced by the neighbouring proteins in response to the thermodynamic force. As 
a consequence, the effective medium differs for a particle undergoing gradient diffusion 
from one undergoing tracer diffusion. 

The effective viscosity again enters the renormalization for the response of 
neighbouring particles to the flow field generated by a central protein. We follow the 
work of Batchelor (1972) and Hinch (1977) to renormalize the remaining terms. 
Originally, this renormalization was considered in the context of sedimenting particles 
(Batchelor 1972) and only later was it extended to the gradient diffusion problem 
(Batchelor 1976). 

The strengths of the divergences arising from the force and quadrupole terms are 
given by (29), the velocity disturbance caused by a forced particle. The distribution of 
forces for r > 2a is up/ V,) g’, where each particle has a force strength& and a volume 
Vp. In the sedimentation problem, it can be thought of as an increase in the density of 
the bulk fluid. Thus, the renormalized form of (20) for the gradient diffusion problem 
is, for Ix-x,I > 1, 

- - v ( P )  (x I XI) + v. ( 2 P * W ) ( X  I Xl>> 

r r 

The new terms relative to the renormalized equation for the tracer particle, (35), are 
the force and quadrupole terms, given by (33),  which arise from neighbouring particles 
experiencing the thermodynamic force. An essential feature of the renormalization in 
gradient diffusion and sedimentation problems is that the uniform body force $f,/ V, 
exerted by the particles far from the fixed particle does not drive a fluid velocity but 
rather only changes the average pressure gradient (Hinch 1977). In the case of a 
sedimenting suspension of spheres this uniform body force can be eliminated from the 
average momentum equation by adopting a reduced pressure based on the average 
density of the suspension rather than the fluid density. In the present application to a 
suspension of particles within a membrane experiencing a common thermodynamic 
driving force, this uniform force distribution produces a mean pressure gradient within 
the membrane but does not drive a fluid flow either within the membrane or in the 
surrounding aqueous phases. In addition, the uniform force distribution in the 
membrane does not affect the pressure in the aqueous phases as may be seen from 
(66), (24) and (27). 
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To understand this point physically, it is useful to contrast the present case of a 
planar array of particles embedded in a lipid bilayer surrounded by two aqueous 
phases to a planar array of spheres within a single three-dimensional fluid. In the latter 
case, the body force exerted by the spheres and the resulting pressure gradient would 
drive fluid out of the layer occupied by the spheres, thus driving a fluid flow that would 
greatly accelerate the translation of the spheres. However, strong thermodynamic 
forces keep the lipid molecules within the plane of the membrane and therefore the 
pressure gradient within the membrane and the pressure imbalance between the 
membrane and the aqueous phase does not drive a fluid flow. 

The solution to (66) follows a progression similar to the solution of (35). If the 
velocity is expanded in a Taylor series, the equation for the zeroth-order velocity 
includes only the two non-integral terms on the left-hand side of (66). It is the same as 
the zeroth-order equation for the tracer velocity, (43), which we call 'U.  We use the 
asymptotic form for ' U as q5 + 0, (44), in order not to exceed the O(Q) precision of the 
results. 

The governing equation for the O(q5) correction is similar to (38) but involves all the 
integral terms in (66). Because of the linearity of (38) and the analogous equation for 
the first-order solution of (66), the various contributions to the remainder for the 
velocity of particle 1 can be obtained individually using the two-dimensional 
Oseen-Burgers tensor. The most convenient method to calculate the remainder 
involves five separate additional contributions to the tracer velocity labelled U -  6U 
which we describe in turn. Therefore, the final result for the velocity of a central IMP 
in response to a force on all IMPS in an L2 neighbourhood is the sum of the six 
contributions, ' U -  U.  

The force distribution of cf,/V,)gq5 in r > 2a is most easily calculated by 
decomposing it into three terms - a uniform distribution, (&/ V,) 4, everywhere, a 
distribution of -Cr,/V,) Q in r < 2a, and a distribution of (g- l)cf,/Vp) Q for 
2a < r < R,, uric. The force distribution everywhere produces an O(q5) correction to the 
pressure gradient, but no changes to the velocity of the central particle as discussed 
above. The force distribution of -up/ V,) q5 in 0 < r < u alters the effective force on 
the central particle and induces a disturbance to its velocity, * U, equal to - U,, 4, where 
U, is the velocity of an isolated protein given by (31). 

Calculation of the velocity resulting from the force distribution in a < r < 2a is more 
involved and makes use of the FaxCn law, (29). The force on the disk,f, is zero, and 
u,  is the flow field produced by the force distribution. Substituting the expression for 
ua, (32), into the FaxCn law, we find a disturbance particle velocity 

wheref('l1 = - (JJV,). The intcgral has the value 

The calculation of the velocity resulting from the force distribution in 
2u < r < RtrlLnc, 4U, is identical to the calculation of 3U, except it must be performed 
numerically. Obviously, in the limit as $ + O ,  the contribution from this term is 0 
because g = 1 for I' > 2a. 

For convenience, we utilize a slightly different approach to evaluate the effect of the 
quadrupoles. The presence of the Laplacian operator as part of the quadrupole term 
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in (66) enables us to transform the volume integral for this contribution to a surface 
integral. After inversion and transformation, the expression for the quadrupole 
contribution is 

+ 1 ix2-x11 > 20  

f ( " ) .  (g(x, = yen) I x,) - 1) V2J(y'"' - xl) d c), (69) 

where n is the unit outward normal relative to particle 1. There is a similar surface 
integral for ly(")-x,l at m, but its value is zero because the boundary conditions 
stipulate that gradients of the velocity decay to zero as ly('l) -xl1 --f m. The result for 
the integral at r = 2a and any g for r > 2a is 

5 U =  +!J,,Q[ln(h)-y]pl. (70) 
It turns out that the volume integral in (69) makes no contribution when g + 1 for 
r > 2a (Batchelor 1972). 

The contribution to the velocity resulting from the integrals on the right-hand side 
of (66), U, involves the solution to the isolated two-particle problem. The expression 
for the remainder term is 

I V, - 4npa2€(x2 1 xl) : W(x, - x,) s remainder = 
Ixl-xg/ B 2u 

-(1 +&z* V') U,] P(x2 I x,>dV,, (71 j 

where 

and U, is the velocity of the central protein as given by the Fax& law which results 
from the force and quadrupole distribution. For the case g = 1 for r > 2a, 

0.374 
In (hj - y ' 

"u= (73) 

If g + 1 for r > 2a, U is a function of g and therefore changes with 9. The integral in 
(71) converges like 

U r  dr = 0(rp4) r dr = O(rp3 dr). s s  
Although the right-hand side integral for the gradient problem does not converge as 
quickly as the one for the tracer problem, we are still justified to consider interactions 
only in r 6 ha because h is O(100). 

We must now sum the six contributions to the velocity of the central particle. The 
result is 

(61n(2)+&) Cp U,,+4U+6U= mJ*,  (74) I 1  1 
U =  {I+[  -7+ln(h)-y 

where we solve for U and U numerically at non-zero Cp, and their results are in table 
1. The result for m, in (74) is related to D, by (10). 
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‘ U / U ,  = A +  B 

4 A 

0 0 
0.1 0.014 
0.2 0.052 
0.3 0.26 
0.4 0.62 
0.453 0.83 
0.5 1 .o 
0.6 1.3 

(4 - Y> 
0 
0.032 
0.15 
0.026 

-0.31 
-0.49 
-0.65 
-0.61 

(6 U l  u,> (In (4 - 
0.379 
0.038 
0.080 
0.12 
0.17 
0.20 
0.22 
0.26 

Y) 

TABLE I .  The intermediates ‘U and GU which contribute to the solution for m, and, thus, D ,  

In order to complete the calculation for D,, we must calculate the thermodynamic 
force. Batchelor (1976) derived an expression for D, in terms of the thermodynamic 
force and the hydrodynamic mobility. He found that 

where p is pressure, T is absolute temperature, and j l  is the chemical potential. The 
expression involving j l  is expanded in the series, 

so that the solution for D, to O(q5) involves the terms in (76) up to and includingj = 1 
for which = -4 for disks (Abney et al. 1989b). The combination of (76), (75) and 
(74) yields the results for D,. The low q5 asymptote is 

For h = 250 it is 

6 In (2) +&+ 0.37 
Do In (4 - Y 

3 = 1 - 6.04 + O($2). 
Do 

(77) 

Equations (77) and (78) give the rigorous results for the gradient diffusivity of IMPS 
in the limit of small area fraction and these are the primary results of this section. We 
can compare our results to previous theoretical calculations of D, which ignore 
hydrodynamic interactions (Abney et al. 19893). Their results for hard disks show a 
monotonic increase for D,, and the low q5 asymptote is directly related to the 
thermodynamic force and has the value 1 +4$. This contrasts drastically with the 
hydrodynamically consistent result that as $ + 0, D, += 1 - 6.09 for h = 250. The 
mitigation of D, caused by decreased mobilities overpowers the enhancement caused 
by the thermodynamic forces. The analogous result for spheres for which 
D J D ,  = 1 + 1.456 contrasts with (78) because in the three-dimensional case the 
thermodynamic effect is larger than the hydrodynamic effect and D,/Do is greater than 
1 in the limit q5+0 (Batchelor 1983). 

In addition to the asymptotic results for small area fraction, we have computed the 
gradient diffusivity a t  higher area fractions based on a pairwise approximation of the 
renormalized hydrodynamic interactions, but including the structure of the pair 
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Solution with 
structure 
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4 
FIGURE 4. Two solutions for the normalized gradient diffusion coefficient, D,/D,, a low 9 asymptote 
and a solution that incorporates membrane structure at high 4. The roughness of the curve for the 
solution with structure is a result of the small number of data points used to generate it. 

probability g(4, r )  for an equilibrium hard-disk distribution. This approximation is 
analogous to one given by Glendinning & Russel (1982) for suspensions of spheres. 
The calculation with structure along with the rigorous low q5 asymptote are plotted in 
figure 4. The structure has a much larger effect on the gradient diffusivity than it did 
on the short-time tracer diffusivity. The structure of the pair probability leads to a 
gradient diffusion coefficient that is positive for all values of q5 unlike the low 4 
asymptote. However, these results are only presented as a tentative first step toward 
predicting the gradient diffusivity of IMPs at higher area fractions. The comparable 
approximation for spherical particles has not proved very successful as it gives negative 
values of D, for volume fractions greater than about 0.27 (Glendinning & Russel 1982) 
and does not agree with numerical simulations (Brady & Durlofsky 1988). A proper 
assessment of the validity of the pairwise additive approximation in the present case 
awaits numerical simulations for IMPs. 

5. Conclusions 
We have calculated the effect of hydrodynamic interactions on the short- and long- 

time tracer diffusivity and gradient diffusivity of IMPS by considering their two-body 
hydrodynamic interactions. We have ensemble averaged the N-body Stokes equations 
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and then renormalized and solved the resulting one-particle conditionally averaged 
equations. The results are rigorously valid in the limit 9-0. 

The results for DJD, are plotted in figure 3. The low 4 asymptote given by (45) has 
O(@) errors. It is always numerically smaller than the effective medium approximation, 
given in (43), which uses g = 1 for r > 2a. Incorporating non-uniform g into the 
effective medium approximation has little influence on the results for D,. Hydro- 
dynamic interactions are the sole determinant for D,, and it has only recently been 
possible to calculate D, to O(6,), since the hydrodynamic interactions between proteins 
were only recently calculated (Bussell et al. 1992). Experiments using spectroscopic 
techniques such as electron spin resonance and nuclear magnetic resonance, which 
have temporal resolutions of and s, respectively (Gennis 1989), are needed in 
order to measure the O(10-5s) and faster timescale motions which contribute to D,. 

In the limit $4 0, differences between m, and m,, given by (57), are relatively small 
so that D, is nearly the same as D,. This result contrasts with results for spheres 
(Batchelor 1982). Furthermore, values of DJD, given by (65) decrease with increasing 
Q slower than results based solely on hard-core interactions (Abney et al. 1989a). 
However, at higher area fractions there may be significant differences between D, and 
D, because of strong excluded area effects. Comparisons of the thcoretical results with 
experimental data on the diffusion of proteins in lipid bilayers will require an extension 
of this theory to higher area fractions. 

Lastly, the results for D,/D, are plotted in figure 4. The low 6, asymptote is given by 
(78), and DJD, decreases monotonically as 9 increases. The painvise additive 
approximation incorporating the structure of the pair probability deviates strongly 
from the low Q, asymptote. It displays a minimum at 4 N 0.3 and approaches 1 at high 
4. This contrasts both with the results for spheres (Batchelor 1983) for which 
D,/D, > 1 at low Q and the results for D J D ,  for hard-core disks neglecting 
hydrodynamics for which D,/D, is also greater than 1 (Abney et al. 1989b). For both 
the tracer and gradient diffusion coefficients, the most important results of the paper 
are the rigorously valid small area fraction asymptotes (49,  (65) and (78). The results 
given in figures 3 and 4 simply reprcsent a first attempt to approximate the short-time 
tracer diffusivity and gradient diffusivities at higher area fractions and more reliable 
results for high area fraction will require Stokesian dynamic numerical simulations. 
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